Copied to
clipboard

G = C22⋊D28order 224 = 25·7

The semidirect product of C22 and D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D144D4, C222D28, C23.15D14, C71C22≀C2, (C2×C4)⋊1D14, (C2×C14)⋊1D4, C2.7(D4×D7), D14⋊C44C2, (C2×D28)⋊2C2, C22⋊C42D7, C14.5(C2×D4), C2.7(C2×D28), (C2×C28)⋊1C22, (C23×D7)⋊1C2, (C2×C14).23C23, (C2×Dic7)⋊1C22, (C22×D7)⋊1C22, C22.41(C22×D7), (C22×C14).12C22, (C2×C7⋊D4)⋊1C2, (C7×C22⋊C4)⋊3C2, SmallGroup(224,77)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C22⋊D28
C1C7C14C2×C14C22×D7C23×D7 — C22⋊D28
C7C2×C14 — C22⋊D28
C1C22C22⋊C4

Generators and relations for C22⋊D28
 G = < a,b,c,d | a2=b2=c28=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=c-1 >

Subgroups: 710 in 130 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C22⋊C4, C22⋊C4, C2×D4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C22≀C2, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×D7, C22×C14, D14⋊C4, C7×C22⋊C4, C2×D28, C2×C7⋊D4, C23×D7, C22⋊D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, C2×D28, D4×D7, C22⋊D28

Smallest permutation representation of C22⋊D28
On 56 points
Generators in S56
(2 49)(4 51)(6 53)(8 55)(10 29)(12 31)(14 33)(16 35)(18 37)(20 39)(22 41)(24 43)(26 45)(28 47)
(1 48)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 56)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 40)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)

G:=sub<Sym(56)| (2,49)(4,51)(6,53)(8,55)(10,29)(12,31)(14,33)(16,35)(18,37)(20,39)(22,41)(24,43)(26,45)(28,47), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)>;

G:=Group( (2,49)(4,51)(6,53)(8,55)(10,29)(12,31)(14,33)(16,35)(18,37)(20,39)(22,41)(24,43)(26,45)(28,47), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48) );

G=PermutationGroup([[(2,49),(4,51),(6,53),(8,55),(10,29),(12,31),(14,33),(16,35),(18,37),(20,39),(22,41),(24,43),(26,45),(28,47)], [(1,48),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,56),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,40),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48)]])

C22⋊D28 is a maximal subgroup of
C23⋊D28  C24.27D14  C233D28  C428D14  C429D14  C4210D14  C4212D14  D4×D28  D45D28  C4217D14  D7×C22≀C2  C243D14  C24.34D14  C14.372+ 1+4  C14.382+ 1+4  D2819D4  C14.482+ 1+4  C4⋊C426D14  D2821D4  C14.532+ 1+4  C14.562+ 1+4  C14.1202+ 1+4  C14.1212+ 1+4  C4⋊C428D14  C14.612+ 1+4  C14.682+ 1+4  C4218D14  D2810D4  C4220D14  C4222D14  C4223D14  C4224D14  C4225D14
C22⋊D28 is a maximal quotient of
(C2×Dic7)⋊Q8  (C2×C4)⋊9D28  D14⋊C4⋊C4  (C2×C28)⋊5D4  (C2×Dic7)⋊3D4  (C2×C4).20D28  D28.31D4  D2813D4  D28.32D4  D2814D4  Dic1414D4  C22⋊Dic28  C23⋊D28  C23.5D28  D28.1D4  D281D4  D28.4D4  D28.5D4  D4⋊D28  D4.6D28  D43D28  D4.D28  Q82D28  D144Q16  Q8.D28  D284D4  D44D28  M4(2)⋊D14  D4.9D28  D4.10D28  C24.47D14  C23.44D28  C23.45D28  C232D28  C23.16D28

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C7A7B7C14A···14I14J···14O28A···28L
order1222222222244477714···1414···1428···28
size111122141414142844282222···24···44···4

44 irreducible representations

dim1111112222224
type+++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14D28D4×D7
kernelC22⋊D28D14⋊C4C7×C22⋊C4C2×D28C2×C7⋊D4C23×D7D14C2×C14C22⋊C4C2×C4C23C22C2
# reps12121142363126

Matrix representation of C22⋊D28 in GL4(𝔽29) generated by

1000
0100
0010
00028
,
1000
0100
00280
00028
,
222400
252600
0001
0010
,
241700
2500
00028
00280
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[22,25,0,0,24,26,0,0,0,0,0,1,0,0,1,0],[24,2,0,0,17,5,0,0,0,0,0,28,0,0,28,0] >;

C22⋊D28 in GAP, Magma, Sage, TeX

C_2^2\rtimes D_{28}
% in TeX

G:=Group("C2^2:D28");
// GroupNames label

G:=SmallGroup(224,77);
// by ID

G=gap.SmallGroup(224,77);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,188,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^28=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽